Palabras: Crowdsourcing Transcriptions of L2 Speech

نویسندگان

  • Eric Sanders
  • Pepi Burgos
  • Catia Cucchiarini
  • Roeland van Hout
چکیده

We developed a web application for crowdsourcing transcriptions of Dutch words spoken by Spanish L2 learners. In this paper we discuss the design of the application and the influence of metadata and various forms of feedback. Useful data were obtained from 159 participants, with an average of over 20 transcriptions per item, which seems a satisfactory result for this type of research. Informing participants about how many items they still had to complete, and not how many they had already completed, turned to be an incentive to do more items. Assigning participants a score for their performance made it more attractive for them to carry out the transcription task, but this seemed to influence their performance. We discuss possible advantages and disadvantages in connection with the aim of the research and consider possible lessons for designing future experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality Assessment of Crowdsourcing Transcriptions for African Languages

We evaluate the quality of speech transcriptions acquired by crowdsourcing to develop ASR acoustic models (AM) for under-resourced languages. We have developed AMs using reference (REF) transcriptions and transcriptions from crowdsourcing (TRK) for Swahili and Amharic. While the Amharic transcription was much slower than that of Swahili to complete, the speech recognition systems developed usin...

متن کامل

Don't Count on ASR to Transcribe for You: Breaking Bias with Two Crowds

A crowdsourcing approach for collecting high-quality speech transcriptions is presented. The approach addresses typical weakness of traditional semi-supervised transcription strategies that show ASR hypotheses to transcribers to help them cope with unclear or ambiguous audio and speed up transcriptions. We explain how the traditional methods introduce bias into transcriptions that make it diffi...

متن کامل

Clustering-based Phonetic Projection in Mismatched Crowdsourcing Channels for Low-resourced ASR

Acquiring labeled speech for low-resource languages is a difficult task in the absence of native speakers of the language. One solution to this problem involves collecting speech transcriptions from crowd workers who are foreign or non-native speakers of a given target language. From these mismatched transcriptions, one can derive probabilistic phone transcriptions that are defined over the set...

متن کامل

Automatic Speech Recognition Using Probabilistic Transcriptions in Swahili, Amharic, and Dinka

In this study, we develop automatic speech recognition systems for three sub-Saharan African languages using probabilistic transcriptions collected from crowd workers who neither speak nor have any familiarity with the African languages. The three African languages in consideration are Swahili, Amharic, and Dinka. There is a language mismatch in this scenario. More specifically, utterances spok...

متن کامل

Transcribing continuous speech using mismatched crowdsourcing

Mismatched crowdsourcing derives speech transcriptions using crowd workers unfamiliar with the language being spoken. This approach has been demonstrated for isolated word transcription tasks, but never yet for continuous speech. In this work, we demonstrate mismatched crowdsourcing of continuous speech with a word error rate of under 45% in a large-vocabulary transcription task of short speech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016